

STgenetics

THE BEST WAY TO PREDICT THE FUTURE IS TO Create

Sexing & STgenetics

\diamond Sister companies.

 \diamond

- ♦ Offer a variety of livestock reproductive services globally.
 - Part of the Inguran LLCfamily of companies basedin Navasota, Texas.

Sexing®

- Is a service company best known for sex sorting semen from cattle, deer, horses, sheep, goats and pigs.
- ♦ Dairy cattle industry is the largest customer.
- ♦ Sorts semen for most of the major cattle genetics companies around the world.
- ♦ Sorts deer, horse, sheep and goat semen for individual customers.

Sexing technologies

- Has commercially sorted semen since 2004.
- Sorts using Flow Cytometers computers that will count whatever you teach them to count.
 - Flow cytometric sorting process developed by USDA in cooperation with several federal research labs.
 - ♦ Semen is put into a media that nourishes and protects the sperm.
 - Media also contains a dye that is attracted to genetic material. The more DNA present, the more dye is absorbed.

 X-Chromosome (female) is larger and contains more genetic material than does the Y-Chromosome (male).
X-bearing sperm cells absorb more dye than Y-bearing sperm cells.

- Each sperm is hit by a laser and fluoresces. The more dye in the cell, the more it fluoresces.
- Proprietary software on the sorters determines if the cell is carrying an X or Y Chromosome based on the fluorescence.
- ♦ The sorter then attaches a slight electric charge to the cell based on the chromosome it carries.
- ♦ The cell exits the sorter by passing between two charged plates. These plates direct the cell into the container appropriate for the chromosome it carries.
- The process is consistently 90 percent gender accurate.

Sexing

- Currently has 8 sorting facilities in the U.S. and 15 sorting facilities in 10 foreign countries:
 - ♦ Argentina, Australia, Italy, United Kingdom, Canada, China, Germany, Netherlands, Brazil, New Zealand, India(2), France(2) and Switzerland
- ♦ The Navasota headquarters also provides a dedicated facility for embryo transfer and in-vitro fertilization services.

STgenetics

- Is a livestock genetics company launched in 2015 and specializing in dairy and beef cattle genetics.
- ♦ Features an impressive lineup of elite genomic dairy and beef sires.
- Sells bull semen around the world through a network of sales reps and independent distributors.
- ♦ Operates three bull studs: Navasota, TX; Fond du Lac, WI; Tiffin, OH; and Mehoopany, PA.

STéenetics®

♦ Runs the website STgen.com.♦ Website features an advanced sire selector.

f ¥ in ▲Login																							
		STge	n Q		HOME	v				ИТАСТ	CAREERS V												
An	Angus Bull List																						
Ar	gus 🛛 Red Angu	s Brangus Brahman Brahmar	n Red Char	olais	Club Ca	f Gyr	Heref	ford	Hereford	1 (P)	.imousin	Lowli	ne S	Simmental	Wagy	/u M	aine-Anjou	Bee	f On Dairy				
Ca	Catalog USA New IIInternational - Genomic Score																						
Ba	sic																						
Sire	NAAB/Reg Code: iple NAAB and/or	S: Reg Name			CE		ess																
Reg	# separated by	by Registration #			€BW	I	.ess																
Pas	te From Excel	Bull Picture 💷 📀			•ww	l	ess																
Bull Comment					WYW Less																		
Search Compare Reset Export Excel Print 1 Print 2 No of Animals: 43																							
	Naab Code	Reg Name	Sexed	CED	BW	BW Acc	WW	YW	YH	SC	DOC	HP	Claw	Angle	CEM	MILK	SEN	CW	MARB	RE	SM	SB	Sire Name
	203AN01411	SAV Cattlemaster 4873	Sexed	8	3.0	0.56	78	132	1.2	1.80	21	10.1	0.45	0.36	7	33	-27.00	60	0.99	1.17	74.00	169.00	Connealy Consensus 7229
	203AN01435	Ellingson Accelerate 5264	Sexed	17	-1.1	0.69	67	117	0.8	1.00	12	13.3	0.49	0.44	14	38	-17.00	33	0.41	0.24	75.00	93.00	Koupal Advance 28
	203AN01447	MGR Treasure	Sexed	7	-1.1	0.93	67	132	0.3	1.10	21	10.9	0.55	0.44	16	14	0.00	46	1.13	0.57	74.00	158.00	V A R Discovery 2240
	203AN01456	Sitz Dividend 649C		15	-3.5	0.88	52	102	0.0	0.70	22	<mark>15</mark> .1	0.47	0.50	14	22	3.00	41	0.42	0.46	81.00	124.00	Barstow Cash
	203AN01463	Connealy Commonwealth	Sexed	10	-0.9	0.84	59	102	-0.2	1.20	20	15.1	0.49	0.55	9	24	-3.00	41	0.26	0.78	77.00	117.00	Basin Payweight 1682
	203AN01464	Connealy Concord	Sexed	14	-1.8	0.88	63	104	0.3	0.70	24	10.5	0.43	0.52	17	24	- <mark>1.</mark> 00	40	0.46	0.82	89.00	134.00	Connealy Consensus
	203AN01465	Musgrave Apache	Sexed	11	-1.3	0.74	55	99	0.3	1.00	17	12.6	0.41	0.38	10	39	-13.00	47	0.67	0.68	83.00	131.00	Musgrave Aviator

SexedULTRA 44

- ♦ There are 4 million sperm cells per straw, which is packaged in a ¼ cc straw.
- ♦ Conception rates compared to conventional.
- ♦ 50 million sexed sorted semen units have been produced at ST labs in the past 10 years.
- ♦ More than 20 million calves born using sexedsorted semen between dairy and beef.

The SexedUTRAQO Difference Difference SPERM CELLS PER STRAW

- 90% gender accuracy
- Process removes dead cells
- Specialty media tailored for each step in the production process
- Optimization of staining method
 - State of the art equipment

Stepetics BEEF The best way to predict the future is to Create It

> WWW.STGEN.COM 866.589.1708 Beef@Stgen.com

ULTRAFertility[™]

- ♦ At STgenetics, all sires must consistently produce high quality semen and every collection is required to pass our rigorous pre- and post-thaw quality evaluation, or it is discarded.
- STgenetics has the opportunity to work with cooperating herds to create an internal evaluation system that compares conception rates throughout the industry.
- ♦ A critical number of inseminations allows STgenetics to highly recommend these sires for Fixed Time AI protocols, embryo production and sexed semen superiority.
- Using ULTRAFertility sires will maximize conception rates and keep your business running efficiently.

STdenetics

Style enetics

STyle Genetics are sires available in SexedULTRA 4M® and Conventional that provide a balance between production and favor the show ring.

551AN01499 PVF Surveillance 4129 551AR01515 Pelton Wideload 78B 551 HH01704 H FHF Advance 628 ET 551CH01505 CCC WC Resource 417 P 551CH01506 WC Milestone 5223 P 551 CH01508 LT Patriot 4004 PLD 551SM09024 MG/GSC Authority W14C 551SM09027 RFG/K-LER **Elevation** 727E 551SM09029 SFI Brigade D21 551SM09030 OMF Epic E27 551SM09032 HILB Oracle C033R 203BR01371 Mr. H Bogota Manso 253/1 203BR01600 Mr. Karu Manso 800 203BR01913 Mr SNS Omaha 273/6 +Mr Winchester Magnum 999/3 203RR00473 203RR01190 **3X-HK** Arguitecto 203RR01478 3X-HK Mr. 966 'Parallel' 203RR01503 +Mr. SG 111/1 'Jack' 551RR01606 HK X-Ray 551XB02000 Fur Trader 551XB02001 X-Factor 551 MA01301 BOE Game Changer ET

FEED EFFICIENCY...

IT'S THE Must Have TRAIT

IDENTIFY YOUR MOST FEED EFFICIENT ANIMALS THROUGH TESTING AT THE GDC

Each animal will have complete individual feed intake measurements including:

- Feed Efficiency
- Average Daily Gain
- Carcass Ultrasound Evaluation
- Breeding Soundness Exams
- Docility & Temperament Scores

CONTACT US ABOUT OUR NEXT SCHEDULED TEST

www.GeneticDevelopmentCenter.com

Genetics of Feed Efficiency Available technologies

 Technology now available to measure feed intake and feeding behavior in cattle— *GrowSafe Systems*™

 GDC is the 2nd largest facility in North America equipped with GrowSafe technology to measure feed efficiency in beef cattle.

 20 pens with 4 bunks each approx. 640 heads capacity.

GrowSafe[™] feed-intake & feedingbehavior system

Creating a sustainable future

Demand will exceed the population increase

With fewer, more expensive inputs...

- 175 acres/hour of agricultural land lost to development

- Increasing demand for grains as food or fuel

While reducing emissions...

Creating a sustainable future

↑ Feed efficiency

Feed efficient progress

- Feed efficiency progress for groups:
 - o Management
 - Grain processing
 - \circ Beta agonist
- Considerable variation exist between the feed efficiency of individual-animals
- Need for identifying animals with divergent feed efficiency:
 - Improve understanding of mechanisms associated with feed efficiency
 - Investigate phenotypic or genetic biomarkers for feed efficiency
 - Implement selection programs to improve feed efficiency

Measures of feed efficiency

- Feed to gain ratio (F:G)
 - Amount of feed consumed ÷ weight gained
 - o Traditional measure of feed efficiency
 - Used to monitor animal performance
 - Questionable trait for genetic selection:
 - Strong correlations between F:G and growth traits (Koots et al., 1994; Smith et al., 2010)
 - Ratio traits may cause bias in breeding value prediction (Gunsett, 1984)

Measures of feed efficiency

- Residual feed intake **(RFI)**
 - RFI is a trait that measures the variation in feed intake beyond that needed to support maintenance and performance requirements (Koch et al., 1963)

RFI = Actual Feed Intake – (\beta_1Mid-test BW^{0.75} + \beta_2ADG)

- More appropriate selection trait for feed efficiency:
 - Independent of performance and body size (Arthur, 2001)
 - Not genetically related to growth or mature body size
 - Heritable (Schenkel et al., 2004, Williams et al., 2011, Veerkamp et al., 1995)
 - Favorable effects on methane emissions (Hegarty, 2007; Basarab et al. 2013)

What is residual feed intake?

RFI = <u>Actual</u> Feed Intake – <u>Expected</u> Feed Intake

Proposed by the second second

Expected Feed Intake (Based on Mid-test BW^{0.75} and ADG) Based on body size and performance

- Calves that eat **more** than expected will have a **positive** RFI
- Calves that eat **less** than expected will have **negative** RFI

What is residual feed intake?

 RFI reflects differences in biological mechanisms associated with feed efficiency
Feeding behavior patterns

Texas A&M feed efficiency study

Texas A&M feed efficiency study

Profit, \$ per head

Angus bull test results (n = 252)

Angus bull test results (n = 252)

Average daily gain, lbs per day

STgenetics is creating the future

↑ Feed efficiency

- Independent of growth and mature size
- Uncorrelated with other economically relevant traits
 - Reflects biological differences in feed efficiency
 - Heritable and responds to selection
 - Can provide reliable genomic prediction values

Heritability

Fall Test 2016

October 16 - March 17

Average Daily Gain plotted against Residual Feed Intake.

BREED: RED ANGUS VID: 128 RANCH TAG: 1341 REG#: 3546315 ADG: 4.58 RFI: 6.15 INDEX: 43.61

BREED: RED ANGUS VID: 149 RANCH TAG: 1330 REG#: 3546217 ADG: 4.41 RFI: -6.68 INDEX: 180.05

Forces Shaping Agriculture

- Massive growth in food demand
- Hyper-science/Artificial Intelligence
- Retail and packaging innovation drive ag decisions (intelligent packaging)
- The energy opportunity
- Convenience and health take center stage
- Direct consumer-producer relationships
- Continued improvement in efficiency

THE BEST WAY TO PREDICT THE FUTURE IS TO Create It

51

Thank you

Sexed Semen Beef Cattle Economics and Decision Aids

Dr. Jim McGrann

Ranch Management Economist

Professor Emeritus TAMU

My Thank to Many for This Education Event

- Adelyn Allen
- Luke Bradford and Gustavo Toro
- Haley Herzog
- All the support group at Sexing Technologies
- HCalf program Matt Rickaway & Berry Summerour

Handout Provides

- Sexed Semen Overview.
- Census Date on Herd Size.
- Decision Aids Available and Source.
- Slides Presented Content
- CattleFax Feeder Price Data
- Select sheets from sexed semen use examples.

Choosing Breeding System Defining Your Business Objectives and Goals

- Size of cow-calf operation is a key driver for earnings expectations.
- Producing cattle that meets the market demand.
- Having a controlled breeding season.
- Seedstock again meeting market demands.

Defining Business Objectives and Goals

- Change the genetics currently used
- Specialized markets replacement heifers
- Retained ownership and or program cattle
- Commit to a high level of labor and management
- Necessity for making a living in the cattle business

You Need to Consider Using Sexed Semen If

- Currently using conventional AI.
- In seedstock business.
- Producing replacement heifers.
- Changing cow herd genetics.
- Using a crossbred breeding system.

Economic Reality of Breeding Systems

- Breeding system cost is irrelevant as a % of total production cost or calf value.
- Semen is a small percent of costs.
- Key is pregnancy and value of calves.
- Management and labor requirement is higher.

Other Positive Economic Factors With AI

- Fewer herd bulls required.
- Improved genetics with AI
- More calves born early in the calving season.
- Increased potential for cow herd with life time early calves.

Why Breeding Costs are Economically Irrelevant

- It's a small percent of total production costs or calf Value.
- The difference in cost is small between breeding alternatives.
- Change in net revenue can be very significant.
- You don't save by having a poor or cheap breeding system.

Comparing Breeding System Alternatives

It comes down to added revenue versus added cost.

Don't Tell the Semen or Breeding Service Provider

- They mostly compete on semen price and service costs.
- Seldom measure or know the benefits to producer.
- All bull owners think their bull is the best!
- You can blame providers if anything goes wrong!

Key Variables When Comparing Breeding System

- Gender Value Difference.
- Cattle market difference.
- Pregnancy and Weaning Percentages.
- Difference in Breeding System Protocol Cost.

Alternative Breeding System to Compare

- 1. Sexed Semen Al
- 2. Natural Service with same bull genetics
- 3. Conventional AI

Key Economic Variables – Gender Difference

- Bull or steer price
- Heifer price
- Replacement heifer price
- Weight of Weaned Calves

Pregnancy and Weaning Percent by Breeding System

- By breeding system overall % won't differ much.
- Timed AI 55% to 60% pregnancy
- All use cleanup bulls.
- Overall 88% to 90 % pregnancy is a goal!
- Calving ease can be improved when using AI.

Replacement Heifers Comparison

- Al versus natural service.
- Compare alternatives with same genetics.
- Same initial heifer cost and production costs.
- You buy a profit when purchasing heifers to breed.
- Synchronized breeding easier to employ with heifers.

Rely on Top Professionals in a Team to Assist

- Breeding service and semen (genetics) provider.
- Your veterinarian.
- Your auction barn owner for market information.

Females Must be Managed Correct

- Breeding system can't solve poor female management.
- All starts with proper female management.
- BSE for cleanup bulls.
- Breeding protocols must be implemented.

Breeding Systems Do Differ

- Protocol and semen costs differ. Not much as % of total cost.
- Cleanup bulls' (genetics) costs are the same for fair comparison to AI.
- Management requirement of system.
- Need to get the professional team to be involved.

TAMU-Ag. Econ. Spreadsheet Decision Aids

- Organization of data and assist in doing the calculations.
- Facilitate "What if" analysis
- Make an effort to get your own data.
- Measure results start with this last breeding season.

Steps for Implementation

- Get information and choose breeding system with team.
- Team can assist in choice of genetics to use.
- Do the economic budget or projection of expected results.
- Get your plan down on paper.
- Get the job done correctly. Timing is critical.
- Document your performance.

Buyers of Replacement Heifers

- You can now better understand what is behind the a superior AI production system.
- These AI produced replacements are worth more!

Get Your Management Information System (MIS) in Place

- Quick Books[™] for accounting.
- CattleMax[™] for production record.
- SPA preproduction use TAMU spreadsheet.
- Spreadsheet based decision aids.

Recall you manage what you measure!

Sexing Technology - the Experienced Team

Supported across the U.S. See website for supporting information. WWW.STgen.com

Examples of Decision Aids Use

- 1. Hereford-Braham F1 Sexed Semen Versus Natural Service
- 2. F1 Replacement Heifer Budget or Projection